Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 8 of 8 results
1.

Design and engineering of light-sensitive protein switches.

blue green near-infrared red Cobalamin-binding domains Cryptochromes LOV domains Phytochromes Review
Curr Opin Struct Biol, 20 Apr 2022 DOI: 10.1016/j.sbi.2022.102377 Link to full text
Abstract: Engineered, light-sensitive protein switches are used to interrogate a broad variety of biological processes. These switches are typically constructed by genetically fusing naturally occurring light-responsive protein domains with functional domains from other proteins. Protein activity can be controlled using a variety of mechanisms including light-induced colocalization, caging, and allosteric regulation. Protein design efforts have focused on reducing background signaling, maximizing the change in activity upon light stimulation, and perturbing the kinetics of switching. It is common to combine structure-based modeling with experimental screening to identify ideal fusion points between domains and discover point mutations that optimize switching. Here, we introduce commonly used light-sensitive domains and summarize recent progress in using them to regulate protein activity.
2.

Optically inducible membrane recruitment and signaling systems.

blue cyan near-infrared Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Curr Opin Struct Biol, 15 Mar 2019 DOI: 10.1016/j.sbi.2019.01.017 Link to full text
Abstract: Optical induction of intracellular signaling by membrane-associated and integral membrane proteins allows spatiotemporally precise control over second messenger signaling and cytoskeletal rearrangements that are important to cell migration, development, and proliferation. Optogenetic membrane recruitment of a protein-of-interest to control its signaling by altering subcellular localization is a versatile means to these ends. Here, we summarize the signaling characteristics and underlying structure-function of RGS-LOV photoreceptors as single-component membrane recruitment tools that rapidly, reversibly, and efficiently carry protein cargo from the cytoplasm to the plasma membrane by a light-regulated electrostatic interaction with the membrane itself. We place the technology-relevant features of these recently described natural photosensory proteins in context of summarized protein engineering and design strategies for optically controlling membrane protein signaling.
3.

Bacteriophytochromes - from informative model systems of phytochrome function to powerful tools in cell biology.

blue near-infrared red LOV domains Phytochromes Review
Curr Opin Struct Biol, 14 Mar 2019 DOI: 10.1016/j.sbi.2019.02.005 Link to full text
Abstract: Bacteriophytochromes are a subfamily of the diverse light responsive phytochrome photoreceptors. Considering their preferential interaction with biliverdin IXα as endogenous cofactor, they have recently been used for creating optogenetic tools and engineering fluorescent probes. Ideal absorption characteristics for the activation of bacteriophytochrome-based systems in the therapeutic near-infrared window as well the availability of biliverdin in mammalian tissues have resulted in tremendous progress in re-engineering bacteriophytochromes for diverse applications. At the same time, both the structural analysis and the functional characterization of diverse naturally occurring bacteriophytochrome systems have unraveled remarkable differences in signaling mechanisms and have so far only touched the surface of the evolutionary diversity within the family of bacteriophytochromes. This review highlights recent findings and future challenges.
4.

B12-based photoreceptors: from structure and function to applications in optogenetics and synthetic biology.

green Cobalamin-binding domains Review
Curr Opin Struct Biol, 6 Mar 2019 DOI: 10.1016/j.sbi.2019.01.020 Link to full text
Abstract: Vitamin B12-based photoreceptor proteins sense ultraviolet (UV), blue or green light using 5'-deoxyadenosylcobalamin (AdoCbl). The prototype of this widespread bacterial photoreceptor family, CarH, controls light-dependent gene expression in photoprotective cellular responses. It represses transcription in the dark by binding to operator DNA as an AdoCbl-bound tetramer, whose disruption by light relieves operator binding to allow transcription. Structures of the 'dark' (free and DNA-bound) and 'light' CarH states and studies on the unusual AdoCbl photochemistry have provided fundamental insights into these photoreceptors. We highlight these, the plasticity within a conserved mode of action among CarH homologs, their distribution, and their promising applications in optogenetics and synthetic biology.
5.

Controlling protein conformation with light.

blue cyan Dronpa145KN Fluorescent proteins LOV domains Review
Curr Opin Struct Biol, 5 Mar 2019 DOI: 10.1016/j.sbi.2019.01.012 Link to full text
Abstract: Optogenetics, genetically encoded engineering of proteins to respond to light, has enabled precise control of the timing and localization of protein activity in live cells and for specific cell types in animals. Light-sensitive ion channels have become well established tools in neurobiology, and a host of new methods have recently enabled the control of other diverse protein structures as well. This review focuses on approaches to switch proteins between physiologically relevant, naturally occurring conformations using light, accomplished by incorporating light-responsive engineered domains that sterically and allosterically control the active site.
6.

Photodimerization systems for regulating protein-protein interactions with light.

blue cyan near-infrared red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Curr Opin Struct Biol, 25 Feb 2019 DOI: 10.1016/j.sbi.2019.01.021 Link to full text
Abstract: Optogenetic dimerizers are modular domains that can be utilized in a variety of versatile ways to modulate cellular biochemistry. Because of their modularity, many applications using these tools can be easily transferred to new targets without extensive engineering. While a number of photodimerizer systems are currently available, the field remains nascent, with new optimizations for existing systems and new approaches to regulating biological function continuing to be introduced at a steady pace.
7.

Strategies for the photo-control of endogenous protein activity.

blue Cryptochromes Fluorescent proteins LOV domains Review
Curr Opin Struct Biol, 28 Nov 2016 DOI: 10.1016/j.sbi.2016.11.014 Link to full text
Abstract: Photo-controlled or 'optogenetic' effectors interfacing with endogenous protein machinery allow the roles of endogenous proteins to be probed. There are two main approaches being used to develop optogenetic effectors: (i) caging strategies using photo-controlled conformational changes, and (ii) protein relocalization strategies using photo-controlled protein-protein interactions. Numerous specific examples of these approaches have been reported and efforts to develop general methods for photo-control of endogenous proteins are a current focus. The development of improved screening and selection methods for photo-switchable proteins would advance the field.
8.

Modular engineering of cellular signaling proteins and networks.

blue cyan red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Curr Opin Struct Biol, 15 Jul 2016 DOI: 10.1016/j.sbi.2016.06.012 Link to full text
Abstract: Living cells respond to their environment using networks of signaling molecules that act as sensors, information processors, and actuators. These signaling systems are highly modular at both the molecular and network scales, and much evidence suggests that evolution has harnessed this modularity to rewire and generate new physiological behaviors. Conversely, we are now finding that, following nature's example, signaling modules can be recombined to form synthetic tools for monitoring, interrogating, and controlling the behavior of cells. Here we highlight recent progress in the modular design of synthetic receptors, optogenetic switches, and phospho-regulated proteins and circuits, and discuss the expanding role of combinatorial design in the engineering of cellular signaling proteins and networks.
Submit a new publication to our database